Abstracts – Browse Results

Search or browse again.

Click on the titles below to expand the information about each abstract.
Viewing 11 results ...

Asmar, M E, Hanna, A S and Whited, G C (2011) New Approach to Developing Conceptual Cost Estimates for Highway Projects. Journal of Construction Engineering and Management, 137(11), 942–9.

Bogus, S M, Diekmann, J E, Molenaar, K R, Harper, C, Patil, S and Lee, J S (2011) Simulation of Overlapping Design Activities in Concurrent Engineering. Journal of Construction Engineering and Management, 137(11), 950–7.

  • Type: Journal Article
  • Keywords: Construction costs; Scheduling; Simulation; Construction; Engineering; Design; Costs; Scheduling; Simulation; Concurrent engineering; Design;
  • ISBN/ISSN: 0733-9364
  • URL: https://doi.org/10.1061/(ASCE)CO.1943-7862.0000363
  • Abstract:
    Concurrent engineering is the process of reducing the total project delivery time by overlapping activities that normally occur sequentially. The benefits are a shortening of delivery time and a possible reduction in overall costs. However, there are potential risks to overlapping dependent activities. The interaction between an upstream activity and a downstream activity relies on how information evolves in the upstream activity and how sensitive the downstream activity is to that changing information. This implies that if an upstream activity is slow to evolve information and a downstream activity is highly sensitive to changing information, the risk in overlapping these activities will be higher than activities that are fast to evolve and not as sensitive to changing information. The risk can manifest in rework, or reperforming some aspect of the downstream activity because of the evolution of the upstream activity and the amount of overlapping used. This research developed computer simulation models to better understand the potential risk of rework. The simulation models allow for overlapping different types of slow- and fast-evolving upstream activities with high- and low-sensitivity downstream activities using overdesign and early release strategies and different amounts of overlapping. The overall findings show that simulations of overlapping activities yield a reliable approach to modeling concurrent engineering activities. The simulations provide information on the probability of rework based on the different combinations of evolution, sensitivity, overlapping strategy, and the percent amount of overlapping used between the upstream and downstream activity. The use of computer simulations and modeling of overlapping activities therefore allows engineers and managers to understand the potential risks and what strategies to apply when utilizing concurrent engineering on a project.

Cass, D and Mukherjee, A (2011) Calculation of Greenhouse Gas Emissions for Highway Construction Operations by Using a Hybrid Life-Cycle Assessment Approach: Case Study for Pavement Operations. Journal of Construction Engineering and Management, 137(11), 1015–25.

Cheng, Y, Yu, C and Wang, H (2011) . Journal of Construction Engineering and Management, 137(11), 933–41.

Hallowell, M R and Calhoun, M E (2011) Interrelationships among Highly Effective Construction Injury Prevention Strategies. Journal of Construction Engineering and Management, 137(11), 985–93.

Jin, X (2011) Model for Efficient Risk Allocation in Privately Financed Public Infrastructure Projects Using Neuro-Fuzzy Techniques. Journal of Construction Engineering and Management, 137(11), 1003–14.

Kim, B and Reinschmidt, K F (2011) Combination of Project Cost Forecasts in Earned Value Management. Journal of Construction Engineering and Management, 137(11), 958–66.

Marques, R C and Berg, S (2011) Risks, Contracts, and Private-Sector Participation in Infrastructure. Journal of Construction Engineering and Management, 137(11), 925–32.

Song, Y and Chua, D K H (2011) Requirement and Availability Time-Window Analysis of Intermediate Function. Journal of Construction Engineering and Management, 137(11), 967–75.

Unsal, H I and Taylor, J E (2011) Absorptive Capacity of Project Networks. Journal of Construction Engineering and Management, 137(11), 994–1002.

Young, D A, Haas, C T, Goodrum, P and Caldas, C (2011) Improving Construction Supply Network Visibility by Using Automated Materials Locating and Tracking Technology. Journal of Construction Engineering and Management, 137(11), 976–84.